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Superconductivity

• Superconductivity (1911, Heike Kamerlingh Onnes):

“Electrical resistance= 0” & “Magnetic flux fields are expelled”.

• The classical Abelian Maxwell-Higgs (Abelian Higgs, AH) model describes

the superconductivity phenomena at low temperature.



Abelian-Higgs (AH) model

• Minkowski space (R1+d , g) with metric tensor g = diag(1,−1, · · · ,−1)

The Lagrangean LAH for (AH) model

LAH(A, φ) = − 1

4q2
FαβF

αβ + Dαφ(Dαφ)− q2

2

(
|φ|2 − 1

)2
.

• The Higgs field φ : R1+d → C

|φ| measures density of superconducting electron pairs (Cooper pairs)

The gauge potential field A = −iAαdxα, Aα : R1+d → R

The Maxwell gauge field FA = − i
2Fαβdx

α ∧ dxβ , Fαβ = ∂αAβ − ∂βAα.

DAφ = Dαφdx
α, Dαφ = ∂αφ− iAαφ.



Euler Lagrange equations

• The invariance of LAH under the following gauge transformations:{
φ→ e iωφ,

A→ A− idω,

for any smooth real function ω over R1+d .

The gauge group is given by the abelian group of rotations in R2, U(1).

• Euler-Lagrange equations{
DµD

µφ = −2∂V
∂φ̄
,

∂νF
µν = i

2

(
φ̄Dµφ− Dµφφ

)
.

If φ ≡ 0, then ∂νF
µν = 0 is Maxwell’s equations in a vacuum.

• Vortices: bi-dimensional soliton solutions of Euler-Lagrange equations.



Chern-Simons (CS) model

• The first high-temperature superconductor: Bednorz and Müller (1986).

• [Hong-Kim-Pac, Jackiw-Weinberg (1990)] independently proposed the

Chern-Simons (CS) model for the high critical temperature superconductivity.

• Lagrangean LCS for (CS) model

LCS(A, φ) = − µ

4q2
εαβγAαFβγ + Dαφ(Dαφ)− q4

µ2
|φ|2

(
|φ|2 − 1

)2
.

• εαβγ : the totally skew-symmetric tensor fixed so that ε012 = 1

q: the electric charge

µ: Chern-Simons mass scale



Maxwell-Chern-Simons (MCS) model

• [Lee, Lee, and Min (1990)]

- introduced Maxwell-Chern-Simons (MCS) model as a unified self-dual system of

Abelian-Higgs (AH) model and Chern-Simons (CS) model.

- showed formally that the self-dual equation of (MCS) owns both (AH) model

and (CS) model as limiting problems depending on the electric charge q and the

Chern-Simons mass scale µ.



Limit to Abelian-Higgs (AH) model

• The Lagrangian LMCS for (MCS) model:

LMCS(A, φ,
N

2
) = − 1

4q2
FαβF

αβ − µ

4q2
εαβγAαFβγ + Dαφ(Dαφ) +

1

8q2
∂αN∂

αN

− |φ|2
(
N

2
− q2

µ

)2

− q2

2

(
|φ|2 − µ

q2

N

2

)2

.

• Fix q2 = λµ
2 , and assume the identity N

2 = q2

µ .

As µ→ 0, a ”limiting” model would be (AH) model, whose Lagrangean LAH is

LAH(A, φ) = − 1

4q2
FαβF

αβ + Dαφ(Dαφ)− q2

2

(
|φ|2 − 1

)2
.



Limit to Chern-Simons (CS) model

• The Lagrangian LMCS for (MCS) model:

LMCS(A, φ,
N

2
) = − 1

4q2
FαβF

αβ − µ

4q2
εαβγAαFβγ + Dαφ(Dαφ) +

1

8q2
∂αN∂

αN

− |φ|2
(
N

2
− q2

µ

)2

− q2

2

(
|φ|2 − µ

q2

N

2

)2

.

• Fix λ = 2q2

µ , and insert the identity N
2 = q2

µ |φ|
2 into the potential of LMCS .

As µ→∞, a ”limiting” model would be the (CS) model, whose Lagrangean LCS

is

LCS(A, φ) = − µ

4q2
εαβγAαFβγ + Dαφ(Dαφ)− q4

µ2
|φ|2

(
|φ|2 − 1

)2
.



Notations

LMCS(A, φ,
N

2
) = − 1

4q2
FαβF

αβ − µ

4q2
εαβγAαFβγ + Dαφ(Dαφ) +

1

8q2
∂αN∂

αN

− |φ|2
(
N

2
− q2

µ

)2

− q2

2

(
|φ|2 − µ

q2

N

2

)2

.

- α, β, γ ∈ {0, 1, 2}.

- εαβγ is the totally skew-symmetric tensor fixed so that ε012 = 1

- φ : R1+2 → C is the complex valued Higgs field.

- N : R1+2 → R is the neutral scalar field.

- Aα : R1+2 → R is the gauge field.

- Dα = ∂α − iAα is the covariant derivative with i =
√
−1.

- Fαβ = ∂αAβ − ∂βAα is the Maxwell gauge field strength.

- The contant q > 0 denotes the eletric charge.

- The contant µ > 0 is the Chern-Simons mass scale.



The elliptic PDE for (MCS) model

• By the Jaffe-Taubes argument (1980),
∆u = λµeu − µN + 4π

∑s
j=1 njδpj ,

∆N = µ (µ+ λeu)N − λµ(µ+ λ)eu.
(MCS)

- eu : the density of superconducting electron pairs (the Cooper pairs).

- δpj : Dirac measure at pj .

- pj : vortex point (the absence of electron pairs, i.e. eu(pj ) = 0).

- N : the neutral scalar field.

- µ > 0: the Chern-Simons mass scale.

- λ = 2q2

µ , where q > 0 denotes the eletric charge.



The class of solutions for (MCS) model

• The elliptic PDE for (MCS) model
∆u = λµeu − µN + 4π

∑s
j=1 njδpj ,

∆N = µ (µ+ λeu)N − λµ(µ+ λ)eu.
(MCS)

• In R2,

- topological solution: u(∞) = 0 and N(∞) = λ.

- nontopological solution: u(∞) = −∞ and N(∞) = 0.

• In a flat two torus Ω,

(i) (CS) limit (µ→∞)

- topological solution: u → 0 and N
λ → 1 a.e. as λ→∞.

- nontopological solution: u → −∞ and N
λ → 0 a.e. λ→∞.

(ii) (AH) limit (µ→ 0)

- unique periodic solution.



Mathematically rigorous proofs

(i) Chae and Kim (1997)
- the existence and the convergence of topological solutions to the (CS) model
and (AH) model in a full space R2, and on a flat two torus Ω.

(ii) Ricciardi and Tarantello (2000)
- the existence and the convergence of topological solution and mountain pass
solution to the (CS) model and (AH) model on Ω.
(here, the convergence of mountain pass solution to (CS) model was only proved
when the total number of vortex points is one).

(iii) Ricciardi (2002)
- (CS) convergence in C n regularity, ∀n ≥ 0, for an arbitrary sequence of solutions
on Ω while λ = 1.

(iv) Chae and Imanuvilov (2002)
- the existence of non-topological solutions in R2 by the perturbation theory.

(v) Han and Kim (2005)
- the convergence to the (CS) model and (AH) model for the nonself-dual case.



Our main goals

• to improve and complete the (CS) limit result of (MCS) model without any
restriction on either a particular class of solutions, the number of vortex points, or
the Chern-Simons parameter λ.

• to derive the relation between the density of superconducting electron pairs eu

and the neutral scalar field N.

• to establish the existence of periodic solutions of (MCS) satisfying the
concentrating property so that we could answer the open problem raised by
[Tarantello (2004)].



Main result I (Asymptotic behavior of solutions)

Theorem

We assume that {(uλ,µ,Nλ,µ)} is a sequence of solutions of (MCS). Then

lim
λ,µ→∞, λµ→0

∥∥∥∥euλ, µ − Nλ,µ
λ

∥∥∥∥
L∞(Ω)

= 0.

• The idea of the proof:
Step 1. By applying the Green’s representation formula,∥∥∥∥∇(uλ,µ − u0 +

Nλ,µ
µ

)∥∥∥∥
L∞(Ω)

= O(λ).

Step 2. By using a suitable scaling, and the nondegeneracy of −∆ + 1 in R2,

lim
λ,µ→∞,λµ→0

∥∥∥∥euλ,µ − Nλ,µ
λ

∥∥∥∥
L∞(Ω)

= 0.



The relation between (MCS) and (CS)

• (MCS) is equivalent to{
∆(u + N

µ ) = −λ2eu
(
1− N

λ

)
+ 4π

∑s
j=1 njδpj ,

∆N = µ (µ+ λeu)N − λµ(µ+ λ)eu.
(MCS)

• By limλ,µ→∞,λµ→0

∥∥∥euλ,µ − Nλ,µ
λ

∥∥∥
L∞(Ω)

= 0,

λ2eu
(
1− N

λ

)
would be a perturbation of λ2eu (1− eu) in the following elliptic

PDE obtained from (CS) model.

∆u = −λ2eu (1− eu) + 4π
s∑

j=1

njδpj . (CS)



Main result II (Asymptotic behavior of solutions)

Theorem

We assume that {(uλ,µ,Nλ,µ)} is a sequence of solutions of (MCS). As
λ, µ→∞, λ

µ → 0, up to subsequences, one of the following holds:

(i) uλ,µ → 0 uniformly on any compact subset of Ω \ ∪i{pi};

(ii) uλ,µ + 2 lnλ− u0 → ŵ in C 1
loc(Ω), where ŵ satisfies ∆ŵ + eŵ+u0 = 4πM;

(iii) there exists a nonempty finite set B = {q̂1, · · · , q̂k} ⊂ Ω such that

λ2euλ,µ
(

1− Nλ,µ
λ

)
→
∑
j

αjδq̂j , αj ≥ 8π,

in the sense of measure.

• The idea of the proof:
Blow up analysis developed in Brezis-Merle (1991), Li-Shafrir (1994),
Bartolucci-Tarantello (2002), Choe-Kim (2008).



Blow up solutions

B := {q̂j}kj=1 and {(uλ,µ,Nλ,µ)} is a family of solutions of (MCS) satisfying

(i) limλ,µ→∞, λµ→0 (uλ,µ + 2 lnλ) (qjλ,µ) = +∞, and

(ii) limλ,µ→∞, λµ→0 q
j
λ,µ = q̂j , j = 1, · · · , k .

then B is called a blow-up set and {(uλ,µ,Nλ,µ)} is called a family of blow up

solutions (or bubbling solutions) of (MCS) at B.



Main result III (Blow up solutions with lower bound)

• Let M =
∑n

i=1 mi , and u0(x) = −4π
∑n

i=1 miG (x , pi ),
where G (x , y) is the Green’s function satisfying

−∆xG (x , y) = δy −
1

|Ω|
,

∫
Ω

G (x , y)dy = 0.

Theorem

Assume M > 2, and 1� (lnλ)λ2 � µ.

Let q̂ be a non-degenerate critical point of u0.

Then (MCS) has a solution (uλ,µ,Nλ,µ) satisfying

(i) λ2euλ,µ
(

1− Nλ,µ
λ

)
→ 4πMδq̂ in the sense of measure as λ, µ→∞,

(ii) maxy∈Ω uλ,µ(y) ≥ c for some constant c ∈ R,

(iii)
Nλ,µ
λ → 0 uniformly on any compact subset of Ω \ {q̂} as λ, µ→∞.



Idea of the proof for Main result III
• Motivation: (MCS) is equivalent to{

∆(u + N
µ ) = −λ2eu

(
1− N

λ

)
+ 4π

∑s
j=1 njδpj ,

∆N = µ (µ+ λeu)N − λµ(µ+ λ)eu.
(MCS)

By limλ,µ→∞,λµ→0

∥∥∥euλ,µ − Nλ,µ
λ

∥∥∥
L∞(Ω)

= 0,

λ2eu
(
1− N

λ

)
would be a perturbation of λ2eu (1− eu) in the elliptic PDE

obtained from (CS) model.

• Approximation solution

Uq(y) = w(λ|y − q|)− u0(q) + 4πM(γ(y , q)− γ(q, q))(1− θ) + o(1),

where w is the radially symmetric solution of
∆w + ew (1− ew ) = 0, in R2,

w ′(t)→ − 2M
t + a1(2M−2)

t2M−1 + O( 1
t2M+1 ), t � 1,

w(t) = −2M ln t + I1 − a1

t2M−2 + O( 1
t2M ), t � 1.

(CS)

• Apply the contraction mapping theorem, and observe ∇u0 as the main error
term in the Lyapunov-Schmidt reduction method.



Main result IV (Blow up solutions without lower bound)
• The main error term related to the translation invariance of limiting equation:
G∗(q) =

∑k
i=1 u0(qi ) + 8π

∑
j 6=i G (qj , qi ), for q = (q1, ..., qk), qi ∈ Ω.

• The main error term related to the scaling invariance of limiting equation:

D(q) = limr→0

(∑k
i=1 ρi

( ∫
Ωi\Br (qi )

e fq,i−1
|y−qi |4 −

∫
R2\Ωi

1
|y−qi |4

))
, where

(i) fq,i = 8π(γ(y , qi )− γ(qi , qi ) +
∑

j 6=i (G (y , qj)− G (qi , qj))) + u0(y)− u0(qi ).

(ii) ρi = ρi (q) = e8π(γ(qi ,qi )+
∑

j 6=i G(qi ,qj ))+u0(qi ).

• Let M = 2k ∈ 2N, and q̂ = (q̂1, ..., q̂k) be a non-degenerate critical point of
G∗ (q).

Theorem

Assume that 1� λ� µ and D (q̂) < 0.
Then (MCS) has a solution (uλ,µ,Nλ,µ) satisfying

(i) λ2euλ,µ
(

1− Nλ,µ
λ

)
→ 8π

∑k
j=1 δq̂j , and euλ,µ∫

Ω
euλ,µdx

→ 1
k

∑k
j=1 δq̂j in the sense

of measure as λ, µ→∞,,
(ii) limλ,µ→∞ (maxΩ uλ,µ) = −∞,

(iii) limλ,µ→∞
‖Nλ,µ‖L∞(Ω)

λ = 0.



Idea of the proof for Main result IV

• By limλ,µ→∞,λµ→0

∥∥∥euλ,µ − Nλ,µ
λ

∥∥∥
L∞(Ω)

= 0,

if limλ,µ→∞ (maxΩ uλ,µ) = −∞,

then the blow up profile for λ2euλ,µ
(

1− Nλ,µ
λ

)
is obtained from

Vxi ,ηi (y) = ln
8η2

i

(1 + η2
i |y − xi |2)2

, xi ∈ R2, ηi > 0,

which is a solution of Liouville equation: ∆Vxi ,ηi + eVxi ,ηi = 0 in R2

∫
R2 e

Vxi ,ηi dy = 8π.



Future works

(i) the stability of solutions for the (MCS) model.

(ii) uniqueness or multiplicity of stable solutions, blow up solutions, etc.

(iii) simple / nonsimple blow up phenomena near the singularities.



Thank you for your attention!
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