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Superconductivity

e Superconductivity (1911, Heike Kamerlingh Onnes):

“Electrical resistance= 0" & “Magnetic flux fields are expelled”.

e The classical Abelian Maxwell-Higgs (Abelian Higgs, AH) model describes

the superconductivity phenomena at low temperature.



Abelian-Higgs (AH) model

e Minkowski space (R, g) with metric tensor g = diag(1,—1,---,—1)
The Lagrangean LA for (AH) model
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e The Higgs field ¢ : R1*¢ — C

|| measures density of superconducting electron pairs (Cooper pairs)
The gauge potential field A = —iA,dx®, A, : R 5 R

The Maxwell gauge field Fy = 7%Fa5dxa A dx?, Fop = 0aAg — 0Aa.
Da¢p = Dypdx®, Dy = 0o — iAnd.



Euler Lagrange equations

e The invariance of £A" under the following gauge transformations:
¢ — e“o,
A= A—idw,
for any smooth real function w over R,
The gauge group is given by the abelian group of rotations in R?, U(1).
e Euler-Lagrange equations
v
DMD#¢ :72_8757’
O, F =3 (ngD“gb — D“¢¢) .
If =0, then 0, F*” =0 is Maxwell's equations in a vacuum.

e Vortices: bi-dimensional soliton solutions of Euler-Lagrange equations.



Chern-Simons (CS) model

e The first high-temperature superconductor: Bednorz and Miiller (1986).

e [Hong-Kim-Pac, Jackiw-Weinberg (1990)] independently proposed the

Chern-Simons (CS) model for the high critical temperature superconductivity.

e Lagrangean £ for (CS) model

4
a a9 2
LO(A9) = = 56" AuFay + Dad(D76) = 516 (6 —1)°.
o =87 : the totally skew-symmetric tensor fixed so that %12 =1
q: the electric charge

w: Chern-Simons mass scale



Maxwell-Chern-Simons (MCS) model

o [Lee, Lee, and Min (1990)]

- introduced Maxwell-Chern-Simons (MCS) model as a unified self-dual system of

Abelian-Higgs (AH) model and Chern-Simons (CS) model.

- showed formally that the self-dual equation of (MCS) owns both (AH) model
and (CS) model as limiting problems depending on the electric charge g and the

Chern-Simons mass scale u.



Limit to Abelian-Higgs (AH) model

e The Lagrangian £ for (MCS) model:
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e Fix ¢° = )‘—2“ and assume the identity % =<,

m
As 11 — 0, a "limiting” model would be (AH) model, whose Lagrangean £ is

1
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Limit to Chern-Simons (CS) model

e The Lagrangian £ for (MCS) model:

N 1 —_ 1
LMES (A, 6, E) _ 747(’2,:&/3,:046 _ 4Lq2€amA°‘Fm + Dod(Dg) + 8—q28aNaaN
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e Fix A = 22 and insert the identity % = £ |$|? into the potential of LM,
; N

L

As 11 — o0, a "limiting” model would be the (CS) model, whose Lagrangean £
is

LA, ¢) =~ oV A Fy + Dad(D*6) — "—4|¢>|2 (16> - 1)°.
? 4q2 (o] Y a M2



Notations

N 1 I 1
LM (A, ¢, 5) = _@Faﬁmﬁ — 4—qzeamAaFﬁV + Dop(D¢) + S—qzaa/vaa/v
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~a, 8,7 €{0,1,2}.

- €87 is the totally skew-symmetric tensor fixed so that €12 =1
- ¢ :RY2 — C is the complex valued Higgs field.

- N :RY2 — R is the neutral scalar field.

- Ay R2 5 R is the gauge field.

- D, = 8, — iA, is the covariant derivative with i = /—1.

- Fop = 0, Ag — 08A, is the Maxwell gauge field strength.

- The contant g > 0 denotes the eletric charge.

- The contant p > 0 is the Chern-Simons mass scale.



The elliptic PDE for (MCS) model

e By the Jaffe-Taubes argument (1980),
Au = e — pN + 47377 nidp,

(MCS)
AN = p(p+ Xe') N — du(p + N)e

- e" : the density of superconducting electron pairs (the Cooper pairs).
- 0p; : Dirac measure at p;.

- pj : vortex point (the absence of electron pairs, i.e. e“(P) = 0).

- N : the neutral scalar field.

- i > 0: the Chern-Simons mass scale.

2
A= 2%, where g > 0 denotes the eletric charge.



The class of solutions for (MCS) model
o The elliptic PDE for (MCS) model

Au = Ape —/,LN+47TZ _1 NiSp;,
(MCS)
AN = p(p+ Xe') N — Au(p + N)e

e In R?,

- topological solution: u(oo) =0 and N(co) = .

- nontopological solution: u(oc0) = —oo and N(cc) = 0.

e In a flat two torus €,

(i) (CS) limit (u — o0)

- topological solution: u — 0 and —1lae as A — 0.

- nontopological solution: u — —oco and ¥ T~ 0ae A—oo.
(ii) (AH) limit (z — 0)

- unique periodic solution.



Mathematically rigorous proofs

(i) Chae and Kim (1997)
- the existence and the convergence of topological solutions to the (CS) model
and (AH) model in a full space R?, and on a flat two torus Q.

(i) Ricciardi and Tarantello (2000)

- the existence and the convergence of topological solution and mountain pass
solution to the (CS) model and (AH) model on Q.

(here, the convergence of mountain pass solution to (CS) model was only proved
when the total number of vortex points is one).

(iii) Ricciardi (2002)

- (CS) convergence in C" regularity, Vn > 0, for an arbitrary sequence of solutions
on Q while A = 1.

(iv) Chae and Imanuvilov (2002)
- the existence of non-topological solutions in R? by the perturbation theory.

(v) Han and Kim (2005)
- the convergence to the (CS) model and (AH) model for the nonself-dual case.



Our main goals

e to improve and complete the (CS) limit result of (MCS) model without any
restriction on either a particular class of solutions, the number of vortex points, or
the Chern-Simons parameter .

e to derive the relation between the density of superconducting electron pairs e
and the neutral scalar field N.

e to establish the existence of periodic solutions of (MCS) satisfying the
concentrating property so that we could answer the open problem raised by
[Tarantello (2004)].



Main result | (Asymptotic behavior of solutions)

We assume that {(ux ., Ny )} is a sequence of solutions of (MCS). Then

N
lim girn — M =0.
A, p—>00, %—>0 A L=(Q)
e The idea of the proof:
Step 1. By applying the Green's representation formula,
N
HV <UA,,L —up + '\"L> = 0(N).
t 7@

Step 2. By using a suitable scaling, and the nondegeneracy of —A + 1 in R?,

lim el n M
)\,u—)oo,%—m




The relation between (MCS) and (CS)

o (MCS) is equivalent to

Au+ 1) =—Ne" (1= ) +4n 37, njdy, (MCS)
AN = p(p+ xe') N — du(p + N)e.
e By IimA,p—)oo7%—>O Heux,u - % L1(Q) =
A2et (1 - %) would be a perturbation of A\2e¥ (1 — e“) in the following elliptic

PDE obtained from (CS) model.

Au=—Ne"(1—e")+4r Y _ nidp. (CS)
j=1



Main result Il (Asymptotic behavior of solutions)

Theorem

We assume that {(ux ., Nx )} is a sequence of solutions of (MCS). As
A, b — 00, % — 0, up to subsequences, one of the following holds:

(i) ux,. — 0 uniformly on any compact subset of Q \ U;i{p;};
(ii) ux +2In X —ug — W in C} (), where W satisfies AW + e v = 47,

(iii) there exists a nonempty finite set B = {G1,-- - , G} C Q such that

N
)\ZeuA,u (1 _ ;\,N) — Zaj(saﬂ Q;j > 8777
J

in the sense of measure.

e The idea of the proof:
Blow up analysis developed in Brezis-Merle (1991), Li-Shafrir (1994),
Bartolucci-Tarantello (2002), Choe-Kim (2008).



Blow up solutions

B:= {?Jj}}‘:l and {(ux,, Ny )} is a family of solutions of (MCS) satisfying
(1) M e, 250 (U + 210 2) (¢4.,.) = +oo, and

(i) “mA,u%oo, 5—0 qj)‘\,y =4§,j=1--,k

then B is called a blow-up set and {(uy ., Nx,.)} is called a family of blow up

solutions (or bubbling solutions) of (MCS) at B.



Main result Il (Blow up solutions with lower bound)
e let M=>",m and up(x) = —4rw Y., mG(x,p;),
where G(x, y) is the Green's function satisfying

1

—AXG(X,y):(Sy—ﬁ, /QG(x,y)dy:O.

Theorem

Assume M > 2, and 1 < (InA\)A? < p.
Let g be a non-degenerate critical point of ug.
Then (MCS) has a solution (uy ,, Ny ) satisfying

(i) \2e!rn (1 - %) — 479M04 in the sense of measure as \, u — oo,

(ii) maxyeq ux,.(y) > c for some constant c € R,

(iii) Ni\’“ — 0 uniformly on any compact subset of Q\ {§} as A\, u — oo.




Idea of the proof for Main result Il
e Motivation: (MCS) is equivalent to

Aut )= —Net (1= 3) +4n 35, 00y, )
AN = pu(p+ Ae') N — App + N)e”.
By Iim,\w_,oo,%—m Heuw - e Loo(9) e

Mev (1— %) would be a perturbation of A\2e¥ (1 — e*) in the elliptic PDE
obtained from (CS) model.

e Approximation solution

Uq(y) = w(Aly — ql) — uo(q) + 47M(v(y, q) — (g, 9))(1 = 0) + o(1),

where w is the radially symmetric solution of

Aw +e"(1—e") =0, in R?,
wi(t) - — 20 4 20T 4 (k). £ 1, (CS)
w(t) = —2MInt+ h — o= + O(zh), t> 1.

e Apply the contraction mapping theorem, and observe Vug as the main error
term in the Lyapunov-Schmidt reduction method.



Main result IV (Blow up solutions without lower bound)

e The main error term related to the translation invariance of limiting equation:
* K
G*(a) = 2oy wo(qi) + 87>, G(gj, qi), for 4 = (qu, -, qk), qi € Q.

e The main error term related to the scaling invariance of limiting equation:
fe

. k i
D(Q) =lim,_9 (Zizl pi(fgi\Br(qi) % — ‘/‘RZ\Q/_ ﬁ)>7 where
(i) fa.i = 87(v(y, qi) — (a1, qi) + >2;4(G(y, 45) — G(ai, q;))) + to(y) — uo(qi)-
(i) pi = pi(q) = 87 (V(a,ai)+22 G(aiq5))+uo(ar)
o Let M =2k € 2N, and § = (G, ..., Gx) be a non-degenerate critical point of
G (a).
Theorem

Assume that 1 < A < g and D (q) < 0.

Then (MCS) has a solution (uj, i N).,.) satisfying

(i) N2etnn (1 _ NA ) - 8772 104, and % — %Zj{;l dg, in the sense
of measure as \, u — 00,,

(i) limy - o0 (Maxq uy ) = —00,

(i) lim oo =R — 0,




Idea of the proof for Main result IV

. N,
ux,p — MNp
[] By |Im)\} ’f; 0 He i \

= 0’
Lee(@)

if limy 00 (Maxq uy,,) = —00,
then the blow up profile for A2t (1 — %42 ) is obtained from

812
(1 + 72y — xi[?)?’

which is a solution of Liouville equation:

Vi (y) = In

Xi ER27 Ni >07

AV, . + e%sini =0 in R2

Jgo €Vimidy = 8.



Future works

(i) the stability of solutions for the (MCS) model.
(i) uniqueness or multiplicity of stable solutions, blow up solutions, etc.

(iii) simple / nonsimple blow up phenomena near the singularities.



Thank you for your attention!
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